Menu Top




Gibbs Energy and Equilibrium



Gibbs Energy Change And Equilibrium


Gibbs Free Energy ($G$): As previously discussed, Gibbs free energy is a thermodynamic potential that combines enthalpy ($H$) and entropy ($S$) to determine the spontaneity of a process at constant temperature ($T$) and pressure ($P$). It is defined as $G = H - TS$. The change in Gibbs free energy ($\Delta G$) for a process at constant $T$ and $P$ is given by:

$$\Delta G = \Delta H - T\Delta S$$

Spontaneity Criterion:

Gibbs Energy and Equilibrium Constant ($K$):

For a reversible reaction at equilibrium, the Gibbs free energy change is zero ($\Delta G = 0$). We can relate the standard Gibbs free energy change ($\Delta G^\circ$) to the equilibrium constant ($K$) of the reaction.

Derivation of the Relationship:

Consider a reversible reaction in the gaseous phase:

$$aA(g) + bB(g) \rightleftharpoons cC(g) + dD(g)$$

The Gibbs free energy change ($\Delta G$) for this reaction under non-standard conditions (where the partial pressures are not standard pressures) can be related to the standard Gibbs free energy change ($\Delta G^\circ$) and the reaction quotient ($Q$):

$$\Delta G = \Delta G^\circ + RT \ln Q$$

Where:

At Equilibrium:

When the reaction reaches equilibrium:

Substituting these into the equation $\Delta G = \Delta G^\circ + RT \ln Q$:

$$0 = \Delta G^\circ + RT \ln K$$

Rearranging this equation gives the fundamental relationship between standard Gibbs free energy change and the equilibrium constant:

$$\Delta G^\circ = -RT \ln K$$

This equation is incredibly powerful. It connects a thermodynamic quantity ($\Delta G^\circ$) that relates to spontaneity and energy changes to a kinetic/equilibrium quantity ($K$) that describes the extent of a reaction.

Interpretation of the Relationship:

Calculating $\Delta G^\circ$ from $\Delta H^\circ$ and $\Delta S^\circ$:

We can also calculate $\Delta G^\circ$ using standard enthalpies of formation ($\Delta H^\circ_f$) and standard absolute entropies ($S^\circ$):

$$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$$

This allows us to predict the equilibrium constant ($K$) for a reaction even without direct experimental equilibrium measurements, provided enthalpy and entropy data are available.

Example: Calculate the equilibrium constant ($K_p$) for the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 298 K, given $\Delta H^\circ = -92.4 \text{ kJ/mol}$ and $\Delta S^\circ = -198.7 \text{ J/mol K}$.

Example 1. Calculate the equilibrium constant ($K_p$) for the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 298 K, given $\Delta H^\circ = -92.4 \text{ kJ/mol}$ and $\Delta S^\circ = -198.7 \text{ J/mol K}$.

Answer:

Step 1: Convert all values to consistent units.

$\Delta H^\circ = -92.4 \text{ kJ/mol} = -92400 \text{ J/mol}$

$T = 298$ K

$R = 8.314 \text{ J/mol K}$

$\Delta S^\circ = -198.7 \text{ J/mol K}$

Step 2: Calculate the standard Gibbs free energy change ($\Delta G^\circ$).

$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$

$\Delta G^\circ = -92400 \text{ J/mol} - (298 \text{ K} \times -198.7 \text{ J/mol K})$

$\Delta G^\circ = -92400 \text{ J/mol} + 59212.6 \text{ J/mol}$

$\Delta G^\circ = -33187.4 \text{ J/mol}$

Step 3: Use the relationship $\Delta G^\circ = -RT \ln K_p$ to find $K_p$.

$\ln K_p = -\frac{\Delta G^\circ}{RT}$

$\ln K_p = -\frac{-33187.4 \text{ J/mol}}{8.314 \text{ J/mol K} \times 298 \text{ K}}$

$\ln K_p = -\frac{-33187.4}{2477.572}$

$\ln K_p \approx 13.397$

Step 4: Calculate $K_p$ by taking the antilogarithm.

$K_p = e^{13.397}$

$K_p \approx 6.54 \times 10^5$

The equilibrium constant ($K_p$) for the synthesis of ammonia at 298 K is approximately $6.54 \times 10^5$. This large value indicates that the reaction strongly favors the formation of ammonia under standard conditions.